
SOS in Biochemistry, Jiwaji University, Gwalior M.Sc. II Semester (2019-20) Paper BCH 205: Fundamentals of Molecular Biology (Unit 1)

Eukaryotic DNA Polymerases

EUKARYOTIC DNA REPLICATION

Eukaryotic DNA replication is not as well understood as bacterial replication

- The two processes do have extensive similarities
 - The bacterial enzymes as described earlier have also been found in eukaryotes

Nevertheless, DNA replication in eukaryotes is more complex

- Large linear chromosomes
- Tight packaging within nucleosomes
- More complicated cell cycle regulation

Multiple Origins of Replication

- Eukaryotes have long linear chromosomes
 - They therefore require multiple origins of replication
 - To ensure that the DNA can be replicated in a reasonable time
- □ In 1968, Huberman and Riggs provided evidence for the multiple origins of replication
- DNA replication proceeds bidirectionally from many origins of replication

(a) DNA replication from multiple origins of replication

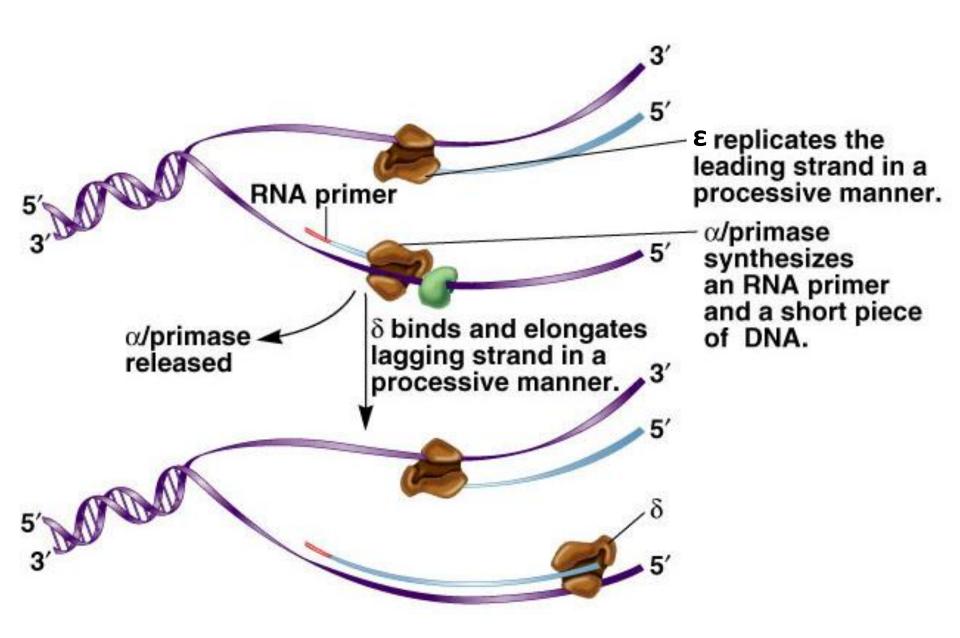
Eukaryotes Contain Several Different DNA Polymerases

- Mammalian cells contain well over a dozen different DNA polymerases
- Four: alpha (α), delta (δ), epsilon (ε) and gamma (γ) have the primary function of replicating DNA
 - α , δ and $\varepsilon \rightarrow$ Nuclear DNA
 - $\gamma \rightarrow$ Mitochondrial DNA

वफ़ादारी, ईमानदारी

	DNA polymerase	Function	Structure
	α	High fidelity replicases Nuclear replication	350 kD tetramer
	δ	Lagging strand	250 kD tetramer
	ε	Leading strand	350 kD tetramer
	γ	Mitochondrial replication	200 kD dimer
		High fidelity repair	
	β	Base excision repair	39 kD monomer
		Low fidelity repair	
là	ζ	Base damage bypass	heteromer
ā	η	Thymine dimer bypass	monomer
à	ι	Required in meiosis	monomer
λά ζ ά η a ι pfa κ		Deletion and base substitution	monomer

.


Eukaryotic DNA Polymerases (Mammalian Enzymes)

Polymerase Types*	Function
α, δ, ε	Replication of nondamaged DNA in the cell nucleus during S phase
γ	Replication of mitochondrial DNA
η, κ, ι, ζ (lesion-replicating polymerases)	Replication of damaged DNA
α, β, δ, ε, σ, λ, μ, φ, θ	DNA repair or other functions [†]

†Many DNA polymerases have dual functions. For example, DNA polymerase δ is involved in the replication of normal DNA, and it also plays a role in DNA repair. In cells of the immune system, certain genes that encode antibodies (i.e., immunoglobulin genes) undergo a phenomenon known as hypermutation. This increases the variation in the kinds of antibodies the cells can make. Certain polymerases in this list, such as μ , may play a role in hypermutation of immunoglobulin genes. DNA polymerase σ may play a role in sister chromatid cohesion,

DNA pol α is the only polymerase to associate with primase

- > The DNA pol α/primase complex synthesizes a short RNA-DNA hybrid
 - 10 RNA nucleotides (iRNA) followed by 20 to 30 DNA nucleotides (iDNA)
- > This is used by DNA pol ε or δ for the processive elongation of the leading and lagging strands respectively
- The exchange of DNA pol α for δ or ε is called a <u>polymerase</u> <u>switch</u>.
 - > It occurs only after the RNA-DNA hybrid is made

- DNA polymerases also play a role in DNA repair
 - **DNA** pol β is not involved in DNA replication
 - It plays a role in base-excision repair
 - Removal of incorrect bases from damaged DNA
- Recently, more DNA polymerases have been identified
 - Lesion-replicating polymerases
 - Involved in the replication of damaged DNA
 - They can synthesize a complementary strand over the abnormal region

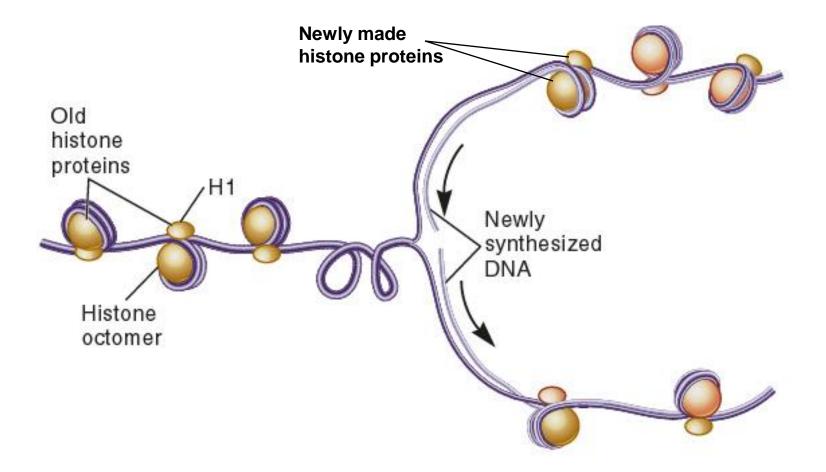

Function	E. coli	Eukaryote	Phage T4
Helicase	DnaB	MCM complex	41
Loading helicase/primase	DnaC	cdc6	59
Single strand maintenance	SSB	RPA	32
Priming	DnaG	Pola/primase	61
Sliding clamp	β	PCNA	45
Clamp loading (ATPase)	$\gamma\delta$ complex	RFC	44/62
Catalysis	Pol III core	$Pol\delta + Pol \epsilon$	43
Holoenzyme dimerization	т	?	43
,			× .
RNA removal	Pol I	FEN1	43
Ligation	Ligase	Ligase 1	T4 ligase
FIGURE 14 27 Similar fund	tions are requi	red at all renlicati	on forks

FIGURE 14.27 Similar functions are required at all replication forks.

Nucleosomes and DNA Replication

- Replication doubles the amount of DNA
 - Therefore the cell must synthesize more histones to accommodate this increase
- Synthesis of histones occurs during the S phase
 - Histones assemble into octamer structures
 - They associate with the newly made DNA very near the replication fork
- Thus following DNA replication, each daughter strand has a mixture of "old" and "new" histones

